Endpoint
Endpoint defines a standard interface that describes the nature of an networking endpoint. It is both strongly typed, and encapsulates runtime-relevant information.
interface EndpointInterface extends EndpointExtraOptions {
(params?: any, body?: any): Promise<any>;
key(parmas?: any): string;
schema?: Readonly<S>;
sideEffects?: true;
// other optionals like 'optimistic'
}
class Endpoint<F extends (...args: any) => Promise<any>> implements EndpointInterface {
constructor(fetchFunction: F, options: EndpointOptions);
key(...args: Parameters<F>): string;
readonly sideEffect?: true;
readonly schema?: Schema;
fetch: F;
extend(options: EndpointOptions): Endpoint;
}
export interface EndpointOptions extends EndpointExtraOptions {
key?: (params: any) => string;
sideEffect?: true | undefined;
schema?: Schema;
}
export interface EndpointExtraOptions {
/** Default data expiry length, will fall back to NetworkManager default if not defined */
readonly dataExpiryLength?: number;
/** Default error expiry length, will fall back to NetworkManager default if not defined */
readonly errorExpiryLength?: number;
/** Poll with at least this frequency in miliseconds */
readonly pollFrequency?: number;
/** Marks cached resources as invalid if they are stale */
readonly invalidIfStale?: boolean;
/** Enables optimistic updates for this request - uses return value as assumed network response */
readonly optimisticUpdate?: (
params: Readonly<object>,
body: Readonly<object | string> | void,
) => any;
/** User-land extra data to send */
readonly extra?: any;
}
Package: @rest-hooks/endpoint
Endpoint Members
Members double as options (second constructor arg). While none are required, the first few have defaults.
key: (params) => string
Serializes the parameters. This is used to build a lookup key in global stores.
Default:
`${this.fetch.name} ${JSON.stringify(params)}`;
sideEffect: true | undefined
Used to indicate endpoint might have side-effects (non-idempotent). This restricts it from being used with useResource() or useRetrieve() as those can hit the endpoint an unpredictable number of times.
schema: Schema
Declarative definition of how to process responses
- where to expect Entities
- Classes to deserialize fields
Not providing this option means no entities will be extracted.
import { Entity } from '@rest-hooks/normalizr';
import { Endpoint } from '@rest-hooks/endpoint';
class User extends Entity {
readonly id: string = '';
readonly username: string = '';
pk() { return this.id;}
}
const UserDetail = new Endpoint(
({ id }) ⇒ fetch(`/users/${id}`),
{ schema: User }
);
extend(EndpointOptions): Endpoint
Can be used to further customize the endpoint definition
const UserDetail = new Endpoint(({ id }) ⇒ fetch(`/users/${id}`));
const UserDetailNormalized = UserDetail.extend({ schema: User });
In addition to the members, fetch
can be sent to override the fetch function.
EndpointExtraOptions
dataExpiryLength?: number
Custom data cache lifetime for the fetched resource. Will override the value set in NetworkManager.
errorExpiryLength?: number
Custom data error lifetime for the fetched resource. Will override the value set in NetworkManager.
pollFrequency: number
Frequency in millisecond to poll at. Requires using useSubscription() to have an effect.
invalidIfStale: boolean
Indicates stale data should be considered unusable and thus not be returned from the cache. This means that useResource() will suspend when data is stale even if it already exists in cache.
optimisticUpdate: (params, body) => fakePayload
When provided, any fetches with this endpoint will behave as though the fakePayload
return value
from this function was a succesful network response. When the actual fetch completes (regardless
of failure or success), the optimistic update will be replaced with the actual network response.
Examples
import { Endpoint } from '@rest-hooks/endpoint';
const UserDetail = new Endpoint(
({ id }) ⇒ fetch(`/users/${id}`).then(res => res.json())
);
import { Endpoint } from '@rest-hooks/endpoint';
import { Entity } from 'rest-hooks';
class User extends Entity {
readonly id: string = '';
readonly username: string = '';
pk() { return this.id; }
}
const UserDetail = new Endpoint(
({ id }) ⇒ fetch(`/users/${id}`).then(res => res.json()),
{ schema: User }
);
import { Endpoint } from '@rest-hooks/endpoint';
import { Entity } from 'rest-hooks';
class User extends Entity {
readonly id: string = '';
readonly username: string = '';
pk() { return this.id; }
}
const UserList = new Endpoint(
() ⇒ fetch(`/users/`).then(res => res.json()),
{ schema: [User] }
);
function UserProfile() {
const user = useResource(UserDetail, { id });
const updateUser = useFetcher(UserDetail);
return <UserForm user={user} onSubmit={updateUser} />;
}
const user = await UserDetail({ id: '5' });
console.log(user);
Additional
Motivation
There is a distinction between
- What are networking API is
- How to make a request, expected response fields, etc.
- How it is used
- Binding data, polling, triggering imperative fetch, etc.
Thus, there are many benefits to creating a distinct seperation of concerns between these two concepts.
With TypeScript Standard Endpoints
, we define a standard for declaring in
TypeScript the definition of a networking API.
- Allows API authors to publish npm packages containing their API interfaces
- Definitions can be consumed by any supporting library, allowing easy consumption across libraries like Vue, React, Angular
- Writing codegen pipelines becomes much easier as the output is minimal
- Product developers can use the definitions in a multitude of contexts where behaviors vary
- Product developers can easily share code across platforms with distinct behaviors needs like React Native and React Web
What's in an Endpoint
- A function that resolves the results
- A function to uniquely store those results
- Optional: information about how to store the data in a normalized cache
- Optional: whether the request could have side effects - to prevent repeat calls